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Abstract: Over the past few decades, industry and academia have made great strides to improve
aspects related with optimal energy management. These include better ways for efficient energy asset
management, generating great opportunities for optimization of energy distribution, discomfort
minimization, energy production, cost reduction and more. This paper proposes a framework for a
multi-objective analysis, acting as a novel tool that offers responses for optimal energy management
through a decision support system. The novelty is in the structure of the methodology, since it
considers two distinct optimization problems for two actors, consumers and aggregators, with
solution being able to completely or partly interact with the other one is in the form of a demand
response signal exchange. The overall optimization is formulated by a bi-objective optimization
problem for the consumer side, aiming at cost minimization and discomfort reduction, and a single
objective optimization problem for the aggregator side aiming at cost minimization. The framework
consists of three architectural layers, namely, the consumer, aggregator and decision support system
(DSS), forming a tri-layer optimization framework with multiple interacting objects, such as objective
functions, variables, constants and constraints. The DSS layer is responsible for decision support
by forecasting the day-ahead energy management requirements. The main purpose of this study is
to achieve optimal management of energy resources, considering both aggregator and consumer
preferences and goals, whilst abiding with real-world system constraints. This is conducted through
detailed simulations using real data from a pilot, that is part of Terni Distribution System portfolio.

Keywords: single-objective optimization; bi-objective optimization; portfolio optimization; Decision
Support System; optimal scheduling; energy scheduling; energy flexibility

1. Introduction

Multi-objective optimization in the energy sector is a demanding problem, involving
many real-world parameters, such as flexibility and demand response (DR) management.
These may pose as dependent, or conflicting objective problems. Addressing such problems
with techniques such as scalarization that transforms multi-objective into single-objective
problems is quite common [1]. Other ways involve multiple objective functions that
describe problems in detail. Optimization problems generate research challenges based on
the solving approach. For example, real-world optimization problems are usually modelled
as non-linear programming problems with many objectives. Conversions of such problems
to single objective ones may cause practical issues, since they output a single optimal
solution considering trade-offs identified on a single, transformed problem. In such cases,
a certain degree of detail is omitted, rendering the approach non-realistic.
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New trends in multi-objective optimization attempt to retain compulsory problem de-
tails defining multiple objective functions to be solved in parallel. Solutions are formulated
as optimal Pareto fronts, generating many options for the best solution, each acting as a
trade-off for another. The state-of-the-art aims to develop methods that improve efficiency
and speed of finding optimal solutions for forming Pareto fronts. Exhaustive approaches
involve implementation of repetitive algorithms having each iteration output a solution
closer to the optimal one, making such problems time complexity dependent. On the other
hand, heuristic approaches, such as evolutionary algorithms that introduce population
approaches, mitigate the issue of time complexity, offering optimal solutions on a single
run. Any decision making related with multi-objective problems should focus on efficient
and timely solutions integrating fine-tailored algorithmic implementations based on prob-
lem complexity. Single-objective optimization finds one optimal solution optimizing only
one objective function. Multi-objective optimization finds two or more optimal solutions
optimizing many objective functions at the same time, while many optimal solutions derive
from the objective space. Optimal solutions are often visualized, by forming a Pareto front
aiding an enhanced decision making process [2].

In this paper, the conception of a tri-layer optimization framework is elaborated.
To achieve day-ahead optimal energy scheduling, the energy load for two actors (consumer,
aggregator) is optimized, while managing their interaction with a Decision Support System
(DSS). The aggregator’s problem poses as a single-objective optimization problem while the
consumer’s poses as a bi-objective optimization problem. The aggregator’s optimization
is expanded to implement a DR signal scheme that aims to optimize portfolio energy
management, while reducing overall cost. Therefore, after performing an analysis, cost
is minimized, whereas comfort is maximized, considering the profiles of all consumers
involved, while offering optimization options for both consumers and aggregators.

The purpose of the proposed tri-layer optimization framework is to offer autonomous
consumer and aggregator optimization and the possibilities to collaborate, in case it is
deemed profitable for either of them. It highlights consumer capabilities allowing the
optimization of assets, without the need of DR signals from the aggregator. This approach
generates new options to relax the energy contract (between consumer and aggregator) and
introduce elasticity on DR signal acceptance. It also increases the prospects for autonomous
peer-to-peer (P2P) level energy optimization [3]. The proposed framework’s validation on
real-world pilots, showcases optimization minimizing the cost, while keeping occupant
discomfort at acceptable levels, through a flexible DR scheme enforcement.

The remaining of this paper is structured as follows: Section 2 reviews the state-
of-the-art, Section 3 states the problem, while Section 4 analyzes the developed con-
cepts/methodology of the proposed bi-layer optimization framework. Section 5 presents
the results of experiments conducted on pilots. The paper concludes with Section 6, dis-
cussing final thoughts, limitations, implications and prospects for this work.

2. Background

This section reviews the state-of-the-art on energy optimization and commonly utilized
methods for minimizing variables, such as operational costs whilst including models such
as microgrids, renewable energy sources, or parameters, such as flexibility.

Multi-objective optimization problems usually involve many objectives with many
inter-dependencies. It is hard to discover optimal solutions that satisfy all objectives.
Analytical and classic numerical methods entail mathematical calculations and search
values that are clearly defined. On the other hand, heuristic methods negate these require-
ments attempting to find global optimal solutions. Real-world multi-objective optimization
problems may require a variety of methods to provide optimal solutions. These include
apriori, Pareto-dominated, interactive and new dominance methods. Multi-objective op-
timization is quite common in the energy sector for solving problems in environmental
protection, energy saving, cost reduction, emissions reduction and more. For each case,
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multi-objective optimization methods yield benefits and drawbacks, generating prospects
for future work [4].

Global warming and environmental parameters introduce various constraints regard-
ing the absorption of distributed energy resources (DER) as well as in the economic aspects.
A multi-objective optimization model is developed to analyze the optimal operating strat-
egy of a DER system, while combining minimizations of energy cost and environmental
impact with the latter assessed in terms of CO2 emissions. The pilot for validating this
model is an eco-campus in Japan and the Pareto front of optimal solutions results from the
compromise programming method. The electrical and thermal demands of the eco-campus
consider the existence of photovoltaics (PVs), fuel cells and gas engines. Results showcase
that when minimizing energy costs, the CO2 emissions increase, while the DER system
functionality becomes sensitive when more weight is applied to the environmental objec-
tives. In addition, considering options, such as bilateral electricity exchange (buy-back
programs), utilization of biogas or taxation on carbon emissions, affects the DER system’s
operation accordingly [5].

On the consumer side, the concept of zero/low energy consumption buildings has
become a research field with many applications and ecological benefits. Both researchers
and practitioners agree that the effectiveness of these structures is often defined by the
level of renewable energy resources (RES) utilization. A comparative study deals with the
design optimization techniques for integrating RES systems in such structures. The research
approach considers genetic algorithms (GA) for solving a single objective optimization
problem and non-dominated sorting genetic algorithm (NSGA-II) for a multi-objective
optimization problem. Principles and parameters of building energy and renewable energy
systems interact with one another, generating variables and constraints for the optimization
process. The pilot building for this approach is the Hong Kong Zero Carbon building.
The results from optimization improvements showcase that when a RES system exists,
the optimization process yields better results than the current configuration of the pilot
building. Furthermore, when a single objective needs to be strictly fulfilled, the single
objective optimization yields the best results. When a variety of design options with
or without compromises should be presented, the multi-objective optimization becomes
ideal [6].

Continued supply and fulfilment of local requirements in heating, cooling and elec-
tricity demand plays a vital role in modern energy management systems. This should
happen in an environmentally friendly and economic manner. DER systems, if efficiently
utilized, may output great results in terms of carbon emissions reduction and optimal
energy management, aiding to address climate change. A novel multi-objective framework
compares two methods for effective design of DER systems, considering total annual
cost (TAC) and carbon emissions. The first method yields a parallel sizing of the two
objectives, while the second method incorporates predefined technologies and system
capacity. The optimization process is evaluated by three scenarios integrating technologies,
the two methods and a case study. Findings reveal that when a DER system connects with
a microgrid, energy storage and a heating network outperforms the other two scenarios.
Furthermore, the first method yields better results regarding environmental emissions and
cost reduction, while offering more options in problem design [7].

Modern buildings integrate many intelligent control systems, enhancing the house-
hold occupant’s experience and comfort. The main issue regarding the best possible
occupant experience includes the correlation of energy consumption with discomfort. Each
of these two variables counterbalances the other. A multi-agent based control framework
attempts to enhance smart building management, defining energy consumption and oc-
cupant comfort levels as the two objective functions of the problem. The results form
Pareto optimal solutions utilizing multi-objective particle swarm optimization (MOPSO)
and weighted aggregation (WA). The variety of trade-off options with regards to energy
cost and occupant comfort generate opportunities for making better decisions on building
design and management [8].
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Microgrid operation often involves the existence of RES. A scalable quantitative
framework attempts to deal with the intermittent nature of RES on microgrid integration.
When RES are heavily utilized a novel chance-constrained stochastic programming model
considers three policies. One of the policies utilizes a fixed amount of RES output during
the whole time of examination, while the other two utilize certain hours and all operating
hours. A combined sample average approximation (SAA) algorithm solves the problem,
showcasing that the policy utilizing all operating hours introduces more restrictions for
optimization, although there is peak RES utilization. In addition, this research presents
possible energy management improvements, when PVs are combined with or covering
demands of other fuel-based, or DER units in power outage periods. The minimization
of operational cost results from sending dispatch signals to each existent resource (s,
fuel-based or any DER units) [9].

Energy optimal scheduling on microgrids is a topic that lately attracts much research
attention. Important issues related with that topic include power balance on normal
and peak demand periods (outages). A novel approach considers the intermittency of
RES generation and that of the demand, outages of distributed generators and cases of
islanding. The problem is solved with a multiple chance-constrained scheduling model.
The model along with the parameters mentioned, also considers outages on energy storage
mediums, such as batteries. Chance-constraints transform utilizing control variables
attempting to decrease the model complexity, while probability distribution functions
handle the available energy reserve in a variety of conditions. For example, when there is
battery outage, or islanding. These functions introduce an index for probability of reserve
sufficiency (PRS). The model is validated and evaluated for a microgrid under different
conditions recording PRS readings [10].

Introducing storage in microgrids plays a paramount role in generating a variety of
extra services. Yet, offering such storage services along with effective grid management
is a demanding task. A chance constrained optimization approach considers electrical
and thermal battery sources for improving grid reliability. Testing incorporates loads
of 5-min intervals for introducing randomness in energy loads/fluctuations. Batteries
can charge and discharge fast. This characteristic makes them appropriate for managing
energy flexibility constraints that may involve PV generation or random peak demand.
Chance constraints mitigate issues with flexibility reducing errors, while common variables
state dependencies of thermal and electrical storage systems. Findings show that this
approach manages energy fluctuations taking advantage of flexibility for a more reliable
grid operation [11].

Extensive usage of RES, such as PV or wind power are essential for the transition to
a more sustainable microgrid operation. A novel probabilistic optimization framework
envisions a more efficient microgrid management. It utilizes chance constrained program-
ming and a bi-objective approach involving RES integration and customer load profiles.
Jointly-distributed arbitrary variables capture the probabilities of reaching the expected
energy load while forcing the operational cost below a certain threshold. This approach
utilizes an improved hybrid artificial bee colony (ABC) and differential evolution (DE)
algorithm to optimize energy management of a microgrid. Results are validated with
a sample average approximation technique that compares findings with a scenario and
Monte Carlo stochastic programming approaches [12].

Pollution distribution and reduction are parameters that should be optimally handled
in hybrid energy systems. Economic and other environmental aspects can be enhanced
with the incorporation of a DR program. The cost minimization of a hybrid energy system
constitutes an objective function, while minimization of CO2 emissions constitutes another.
Common constraints or variables in functions may cause counterbalancing effects on the
final optimization process. A multi-objective optimization problem is solved by outputting
the most efficient solutions considering trade-offs. These may be reported in the form of DR
signals. To validate the results and expose the benefits of this approach, a fuzzy satisfying
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technique chooses the optimal solution, and a DR program outputs possible benefits with
environmental and economic indicators [13].

3. Problem Statement

Due to the heavy penetration of RES in energy grids, the flexibility parameter plays
a paramount role for improving energy distribution, stability and reliability. Flexibility
enables an improved management of any type of energy transfer related with the grid,
according to an initiation signal. Such transfers include energy loads, energy generation
within the grid or incoming and outgoing from the grid. It also creates new opportuni-
ties for energy profiling and portfolio management, offering new capabilities for both
consumers and aggregators who may monitor power exchanges and interactions more
efficiently, optimizing the performance of the power grid.

Flexibility depends on various factors, such as DR programs, RES, and resource
scheduling. DR programs should be enforced rigorously, since non-compliance penal-
ties render this energy concept inefficient. Triggering flexibility resources without strict
scheduling leads to non-viable costs. DR programs should be enforced in a way that
energy sector stakeholders, such as the aggregator, can effectively handle available energy
resources/reserves. That way, aggregated monitoring and adjustment of flexibility aids
improving the exploitation and application of DR programs and the benefits they yield.

There are various studies that contemplate the matter at hand. There are those that
include battery energy storage systems (BESS) that are managed by aggregators with the
consent of the end users [14]. The use of BESS has the added benefit of not interfering
with the end user’s consumption and therefore not requiring any consideration on their
comforts. Additionally, in this case the prosumers’ view is included only as an input for the
aggregator’s portfolio optimization, mainly considering the aggregator’s view. This view is
adopted again in [15], where the uncertainty of the load is examined, when an aggregator
participates in the DR market. In other cases, although the end user’s view is considered,
this is done at the expense of reducing the role of the aggregator to just sending the
electricity price signals [16]. There are also cases where the collaboration of the aggregator
with Microgrid clusters incorporates multi-level chance-constrained programming [17].
However, the main focus of that study is the transactive energy management trading
among microgrids.

In this study, both the view of the aggregator and the end-user is examined in equal
terms, conducting the optimization for each one semi-autonomously. While the objective
remains the best outcome for each, the interests of the other are still taken into consideration.
Especially, in the case of the end-user adopting a human-centric approach. Furthermore,
since the energy consumption of the end user is implicated, not only its uncertainty is
considered, but also the comfort of the user by managing his/her energy consumption.
Moreover, this study uses pilot site real data regarding an aggregator’s portfolio.

For addressing, fine-tuning and combining these concepts, a multi-objective opti-
mization problem may concurrently handle the parameters of flexibility, consumer dis-
comfort, energy cost and more. Solutions provide data for creating services that enable
aggregators to post flexibility/DR signals or participate in electricity markets on a more
informed manner.

This study integrates both concepts of flexibility and DR, and provides a solution
in the form of an optimization problem for consumers and aggregators. It enables a DR
strategy, subject to specific constraints, to generate objective functions before running
optimization algorithms for day-ahead energy scheduling. The algorithms tackle the
issue of optimal energy distribution, based on the combination of a single-objective and
a bi-objective optimization. The single-objective optimization minimizes the portfolio
cost for the aggregator, while the bi-objective optimization optimizes cost minimization
along with discomfort for the consumer. This problem approach generates a framework
for multi-objective analysis. The envisioned optimization framework improves portfolio
management and DR functionality/efficiency. Furthermore, while minimizing consumer
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costs it offers acceptable counterbalancing options for consumer discomfort. It poses as a
long-term improvement for the applied DR strategies and optimal energy management,
highlighting an autonomous optimization for consumers and aggregators. It elaborates on
possibilities for their collaboration, if it is deemed profitable. The consumer can optimize
assets without the need of aggregator DR signals. That way, new capabilities for relaxing
the contract and DR scheme arise, as well as autonomous optimization on the P2P level,
envisioning an automated DR optimization and scheduling framework.

4. Methodology

In this section, the goals of our methodology are stated and the utilized meth-
ods/algorithms. An overview of the steps of our methodology is also presented.

The topic of advanced DR optimization is addressed, by introducing a methodology
and testing the validity of its results. Tasks such as the distinction of optimal load dispatch
can be quite demanding, as they involve great randomness of events. For that reason, this
optimization issue is contemplated, by decomposing the initial problem and distinguish-
ing two scenarios of functionality for the optimization methodology. The first scenario
explores the possibilities of cost minimization along with maintaining acceptable levels of
discomfort for the consumers. The second scenario enables portfolio cost minimization for
the aggregators.

Multi-objective optimization problem solutions should depend on the type of problem
and the envisioned output. In case problems are small and can be expressed in a linear
way, any solver can compute the optimal solution relatively quickly. If that applies, a good
practice is to search for precise solutions. If all the non-dominated outputs can be retrieved,
e-constraint method [18] is an appropriate choice, otherwise, an algorithm with weighted
sums can be used instead. On the other hand, if problems are large and can be expressed in a
non-linear way, solvers take too long and it becomes difficult and slow to extract the optimal
solution, even for single-objective problems. To address these issues, metaheuristics come
into play, such as MOPSO [19], Non-Sorted GA type three (NSGA-III) [20], or Strength
Pareto Evolutionary Programming (SPEA2+) [21].

In this study, methods/algorithms are utilized depending on the Scenario considered
and that way the results are achieved and verified. For Scenario #1 Interior Point Optimizer
(Ipopt (https://coin-or.github.io/Ipopt/ (accessed on 23 April 2021))) is used, that is an
open source software package for large-scale nonlinear optimization. For Scenario #2
the GNU Linear Programming Kit package (glpk (https://www.gnu.org/software/glpk/
(accessed on 29 April 2021))) is used, as a Mixed Integer Programming (MIP) solver. These
scenarios deal with consumers and aggregators, respectively.

The usage of metaheuristics and evolutionary approaches for the problem at stake
has also been examined, yet it was concluded that using mixed integer programming and
large scale nonlinear programming solvers is more appropriate, since they produce optimal
solutions in a quick and precise manner. Furthermore, the fine-tuning of parameters such as
population size and number of function evaluations, commonly required in metaheuristic
approaches, is also avoided.

The proposed optimization engine consists of two optimization problems. The opti-
mization engine takes as input historical time series data regarding consumers and outputs
a day-ahead optimized energy schedule. (1) Consumer that poses as a bi-objective mini-
mization problem. The minimization of cost and the minimization of consumer discomfort;
(2) Aggregator that is a single-objective minimization problem. The minimization of
portfolio cost.

4.1. Dataset & Preprocessing

This section, presents the dataset for development, operation and testing the proposed
approach. It is a timeseries dataset and contains rows of attributes representing entries
for consumers that belong to a portfolio of an aggregator. Various data pre-processing

https://coin-or.github.io/Ipopt/
https://www.gnu.org/software/glpk/
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techniques are utilized, such as handling missing values, or data transformation and
reduction, as needed to normalize the dataset.

Experimentation data refer to 348 consumers with both energy prediction and flexibil-
ity readings over one-hour time intervals retrieved from ASM Terni pilot (https://www.
wisegrid.eu/pilot-sites/terni (accessed on 5 May 2021)) in Italy. ASM Terni S.p.A. is an
Italian multi-utility, operating in the centre of Italy, notably it is the Distributed System
Operator (DSO) of the city of Terni. The local power distribution network expands to a geo-
surface of 211 km2 and delivers around 400 GWh to 65,500 customers annually. The ASM
distribution network connects to the High Voltage (HV) grid through three primary substa-
tions and supplies electricity to residential and business customers with 60 Medium Voltage
(MV) lines (10 kV to 20 kV) and around 700 secondary substations (Figure 1). The peak
power is about 70 MW and the total length of the power lines in the grid is about 2400 km;
600 km MV lines and 1800 km Low Voltage (LV) lines. Currently, the energy customers are
about 65,500, 98% of which have an electronic meter. The grid integrates a large number of
distributed RES which are connected with the MV and LV distribution networks. These
constitute a total installed capacity of about 70 MW (Figure 2). According to this energy
mix, half of the GWh (200 out of 400) absorbed yearly, come from DER systems linked with
the ASM’s LV/MV grid, while around 70 GWh from intermittent RES.

Figure 1. Secondary substations in the city of Terni.

In 2019 the energy consumption reached 347 GWh, while the distributed production
units connected to the MV / LV network (DER) generate 178 GWh (i.e., approximately 49%
of the total demand). Therefore, in 2019 about 50% of the total consumption was covered
by RES. In fact, in 2019 the local power network received renewable energy from:

• 1325 PV plants, the number of plants connected every year is shown in Figure 3;
• one waste-to-energy;
• eight hydro power plants.

https://www.wisegrid.eu/pilot-sites/terni
https://www.wisegrid.eu/pilot-sites/terni
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Figure 2. Average weekly profile of consumption and production in the ASM power network.

Figure 3. Number and capacity of the power generation plants connected to the MV lines
from 2008 to 2019.

In 2019 the total electric power generated from RES was as follows (energy mix
variation is shown in Figure 4):

• 34 GWh from Solar Energy;
• 68 GWh from Hydropower;
• eight GWh from Biomass and waste-to-energy.

For this paper the energy consumption and production of a cluster of 348 consumers
have been used for the evaluation purposes. This cluster consists of residential, com-
mercial and industrial end users, characterized by high level of auto-consumption rate.
Although almost all the electricity users of the ASM’s power distribution network have
smart meters installed in their premises, for many of them monthly values are collected.
On the other hand, the data of the cluster are collected every 15 min and aggregated in
one-hour resolution for experimentation; these data are gathered through the Advanced
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Metering Infrastructure (AMI) which consists of a Smart Meter, Current Transformers and
GPRS modem that enables data transfer to central servers. After a consistency check data
are stored in ASM Terni servers for 5 years.

Figure 4. Energy mix variation.

For further enhancing our dataset, yet another consumer is added to the portfolio
of consumers, that is the novel CERTH/ITI nZEB Smart Home (https://smarthome.iti.
gr/ (accessed on 11 May 2021)) which is located in Thessaloniki, Greece. It is a rapid
prototyping infrastructure incorporating various novel technologies. This structure imitates
real domestic conditions experimenting on actual habitat conditions. Since it integrates
a variety of Internet of Things (IoT) technologies and Information and Communication
Technology (ICT) solutions, it stands as an ideal consumer pilot for this study, presenting
its side and its interaction with the aggregator.

The data observations expand from 1 February 2019 up to 27 February 2019. Whenever
timeseries are utilized, the timestamp is in coordinated universal time (UTC). System
Marginal Price (SMP) is retrieved from the European Network of Transmission System
Operators for Electricity (ENTSO-E) transparency platform (https://transparency.entsoe.eu
(accessed on 3 April 2021)) for both pilot areas, Italy (348 consumers) and Greece (one
consumer). Other important parameters that have been considered are temperature and
operating reserves.

The energy load prediction is based on an ensemble of a set of weak learners, such as
Multilayer Perceptron (MLP), Long Short-Term Memory (LTSM), Gradient Boosting trees
(GBT) and Support Vector Regression (SVR) [22,23]. Their energy forecasting results are
combined using a weighted average with the weights being dynamically computed as a
function of the input features of the prediction process according to (1):

ωMLP∗EMLP + ωLTSM∗ELTSM + ωGBR∗EGBR + ωSVR ∗ ESVR (1)

The weights associated with the prediction results of each of the four weak learners
(MLP, LSTM, GBT and SVR) are computed using a genetic algorithm. The solution is
composed of the four weights and the fitness function is based on the prediction error
obtained by applying the weights on the predictions according to the test data. Such an
approach is presented in [24], allowing for a dynamic weight computation combined with
a weak learner configuration.

The energy demand prediction considers both energy and contextual features. The en-
ergy features are determined from the historical energy data acquired by consumers on-site
smart meters. The contextual features represent data that are not specific to power but

https://smarthome.iti.gr/
https://smarthome.iti.gr/
https://transparency.entsoe.eu
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is correlated to context, such as season, day of the week and day of the month. The en-
ergy flexibility prediction model uses two MLP neural networks to predict the flexibility
lower bound (i.e., below the baseline demand) and upper bound (i.e., above the baseline
demand) [24]. The baseline energy demand shows the electricity would have been con-
sumed by a consumer in the absence of DR and to determine it the X of Y method was
used. Flexibility prediction features reflect the differences between the monitored energy
profiles and the baseline, either above or below. The neurons used are of type ReLU [25],
the metric for training the network was MSE [26] and the optimizer used for determining
the weights was ADAM [27]. The energy load and flexibility predictions have a good
accuracy featuring a MAPE < 10% [26].

Table 1 offers a summary and a description of the data used for experimentation.
For bi-objective optimization timeseries data per consumer are utilized. These include
energy load forecasts and the SMP. For the single-objective optimization utilize timeseries
data for portfolio load forecast are utilized, upper and lower bounds of flexibility and the
SMP. A detailed presentation of data and the mathematical problem formation follows in
Sections 4.2 and 4.3.

Table 1. Dataset description for the two types of optimization.

Optimization Type Data Description

Consumer Energy load forecast (kWh);
System marginal price (€/kWh).

Aggregator

Portfolio load forecast (kWh);
Portfolio upper bound flexibility of each consumer (kWh);
Portfolio lower bound flexibility of each consumer (kWh);
System marginal price (€/kWh).

4.2. Single-Objective Optimization—Aggregator

The optimal day-ahead schedule for the aggregator utilizes lower and upper bounds
of flexibility for each consumer within the portfolio and the energy load forecast for a
specific day and in one-hour resolution. Since, the aim is to minimize the aggregator’s net
cost for trading energy in the day-ahead market, the SMP per market (Italian and Greek) is
also considered, exposing capabilities for optimizing overall portfolio economic benefits
and the portfolio’s day-ahead energy load forecast based on historical data.

Therefore, this study considers a single-objective modeling approach for minimizing
the operational costs for aggregators. Due to the abstract level of input data, a sub-process
for testing and validation is exploited utilizing a single objective function for this use case.
It yields the “on demand” algorithmic output and the optimal contribution of the consumer
to the grid (for a specific timestamp) while abiding with design constraints.

Objective function (2) manages the aggregator’s day-ahead optimal energy resource
scheduling, aiming to reduce its overall operational costs and maximize profits.

f acost(t) = min
Ntot_C

∑
i=1

ttotal

∑
t

Ei,imp(t) ∗ SMP(t) ∗ ∆t (2)

Subject to constraints (3)–(5):

Ei,imp(t) ≥ f lexi,lb(t) (3)

Ei,imp(t) ≤ f lexi,ub(t) (4)

Ntot_C

∑
i=1

ttotal

∑
t

Ei,imp(t) ∗ ∆t =
Ntot_C

∑
i=1

ttotal

∑
t

Ei, f or(t) ∗ ∆t (5)
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With constraints (3) and (4), referring to the maximum and minimum amounts of
energy that each consumer can reach individually and consequently the portfolio as a
whole. Constraint (5) actually states that the sum of the optimized energy scheduling must
be equal to that of the initially predicted one. Therefore, taking into account that the overall
energy consumption does not change, regardless of the optimized schedule proposed to
consumers, their daily consumption habits also do not change.

4.3. Bi-Objective Optimization—Consumer

For optimizing the day-ahead energy scheduling for the consumer, the day-ahead
energy load forecast in one-hour resolution is utilized. That way the overall energy load
consumption can be retrieved. Using historical data from the said pilots and the knowledge
of SMP in both areas, the cost of imported energy for the consumer is calculated.

Bi-objective optimization refers to the consumer use case and the following objectives
are considered: operation cost minimization resulting from reducing energy consumption
at occupant acceptable levels, and consumer discomfort minimization. These two objective
functions are solved simultaneously, considering constraints and common variables.

The objective function related to operation cost reduction is the following:

f pcost(t) = min
ttotal

∑
t

Eimp(t) ∗ EIT(t) ∗ ∆t (6)

Subject to constraints (7) and (8):

Ei,imp(t) ≥ 0, ∀ t ∈ ∆t (7)

Ei,imp(t) ≤ Ei,max ∗ Ei, f or(t), ∀ t ∈ ∆t (8)

Effective energy management involves a certain level of load manipulation for facili-
ties. For households, consumer loads for home appliances are distinguished, which are
categorized into fixed, regulatable and deferrable loads. Lightning, cooking and electronic
devices belong to the fixed load that should be used anytime, on request. Water heaters
and heat, ventilation and air-conditioning (HVAC) systems belong to the regulatable loads,
being subjects to usage delay or rescheduling. Appliances, such as dishwashers and dryers,
belong to the deferrable loads, since their operation can be deferred. Consumer thermal
comfort considering these parameters poses a challenging task for effective and targeted
DR scheme implementation [28].

Consumer comfort is subjective and poses significant difficulties for a realistic assess-
ment and quantification. According to ISO7730 thermal comfort standard [29] the Predicted
Mean Value (PMV) index is used to calculate human perception of comfort. The PMV
index ranges between [−3, 3], where: 0 means neither hot, nor cold; +/−1 slightly warm
(+), or slightly cold (−); +/−2 means heat (+), or cold (−); and +/−3 means very hot
(+), or very cold (−). Yet, for retrieving PMV index values access to a certain number of
data attributes is needed, such as air temperature, air velocity, air humidity, mean radiant
temperature, clothing insulation and occupant activity. Since this study has no access to
such data, consumer (occupant) discomfort is calculated adjusting a custom index that
considers the PMV index value range and discomfort calculation, as presented in [30].
That way, the output of discomfort across all consumers is normalized between values
[0, 1], distinguishing five discomfort profiles. An example of such profiles is presented
in Section 5.1.

The objective function related to the minimization of the consumer discomfort is
described as:
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f pdiscom f ort_reduction(t) = min
ttotal

∑
i=1

Cpre f erence

2
∗ Eimpreduction(t)

2 + auxcoe f f icient ∗ Eimpreduction (9)

Subject to constraints (7), (8), (10) and (11).

Cpre f erence > 0 (10)

auxcoe f f icient > 0 (11)

The minimization of consumer discomfort function (9) models the degree of discom-
fort a consumer feels when reducing the energy consumption. The greater the energy
consumption reduction, the greater discomfort [31]. Cpre f erence and auxcoe f f icient pose as
customer-specific variables. A high value of Cpre f erence expresses a consumer’s preference to
lower energy consumption also decreasing discomfort, while a greater auxcoe f f icient value
infers to more discomfort [32].

5. Results

This section presents results as scenarios for the optimization actors. These are,
consumers and aggregators. The two optimizations, single- and bi-objective, interact with
each other, based on the following architectural scheme forming a tri-layer interaction.

5.1. Scenario #1: Consumer

The Consumer layer optimizes consumer’s energy requirements for one day-ahead,
while integrating five personalized options for occupant discomfort. For presentation
clarity, the results for a single consumer are presented. The same optimization process,
along with its results, applies to all the consumers in the aggregator’s portfolio (as described
in Section 4.1).

Figure 5 shows the bi-objective optimization output of the consumer layer for a
day-ahead scheduling, along with discomfort options and economic reduction solutions.

Figure 5. Optimization for a single consumer.
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The five reduction solutions reflect five distinct levels of discomfort, considered in this
work, that is:

• No Optimization (NO): the initially state, prior to any optimization. Serves as a
baseline scenario.

• No Discomfort (ND): the case, where the minimum amount of discomfort is considered.
• Slight Discomfort (SD): the case, where a slight level of discomfort is considered.
• Average (AD): the case, where a medium level of discomfort is considered.
• Much Discomfort (MD): the case, where a greater level of discomfort is considered.
• Heavy Discomfort (HD): the case, where the greatest amount of discomfort

is considered.

These solutions are presented in Figure 6 in the Pareto front as the outcome of the
bi-objective optimization approach. Appendix A (Table A1) outlines the cost minimization
for consumers, based on the five options available. The values presented are for a period
of 24 h, expressed in kWh and in relative change form (in %), in terms of the initial value,
i.e., No Opt. (NO) Scenario. Figure 5 and Appendix A (Table A1) present results for one day
within the examined period of 1 February 2019 up to 27 February 2019, that is, 7 February
2019. Similar results have been produced for every day of the examined period.

Figure 6. Pareto front of optimal solutions.

5.2. Scenario #2: Aggregator

As in the case of the consumer, cost minimization is the objective, differing only in
scale, and constrained by the flexibility of the consumer portfolio, as detailed in Section 4.1.
The DSS layer optimization outcome for the aggregator’s consumer portfolio for the day-
ahead energy scheduling, can be seen in Figure 7.
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Figure 7. Optimization for aggregator portfolio.

The upper and lower flexibility bounds can be seen, as a set for the whole portfolio in
black, and the forecasted values in red. The orange dashed line depicts the SMP values,
and grey bars show the final optimized per hour energy consumption of the portfolio.
The way the actual energy consumption is modified is depicted by the forecasted red line
to the grey bars according to the SMP values; whenever the SMP is high, the consumption
is lowered to the lowest possible value; whenever the SMP is low, the energy consumption
is regained, reaching the highest values possible, in order to have the same total daily
energy consumption in the end. According to this scheme, the DR signals to be sent to each
of the consumers are calculated. Every time a deviation between the forecasted energy
consumption and the optimized one exists, DR signals are to be sent to the consumers.
Since the whole DR portfolio is included, the idea is that each consumer should contribute
according to his/her capabilities, that is their attributed flexibility, in order to have a fair
strategy among them. First, their contribution to the total portfolio flexibility is calculated
for every hour as formulated in the following equations:

f lexi,lb%
(t) =

Ei, f or(t)− f lexi,lb(t)

∑
Ntot_C
i=1 Ei, f or(t)−∑

Ntot_C
i=1 f lexi,lb(t)

(12)

f lexi,ub%
(t) =

f lexi,ub(t)− Ei, f or(t)

∑
Ntot_C
i=1 f lexi,ub(t)−∑

Ntot_C
i=1 Ei, f or(t)

(13)

Then, this is applied to the difference between the optimized and originally forecasted
energy consumption for that hour, and the required amount of energy in kWhs to be
reduced, or increased, is it may be the case, is calculated for every consumer, as formulated
in the following equations, that is:
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f lexi,lb(t) =

{
f lexi,lb%

(t) ∗ [∑Ntot_C
i=1 Ei, f or(t)−∑

Ntot_C
i=1 Eopt(t)] , ∑

Ntot_C
i=1 Ei, f or(t) > ∑

Ntot_C
i=1 Ei,opt(t)

0 , ∑
Ntot_C
i=1 Ei, f or(t) < ∑

Ntot_C
i=1 Ei,opt(t)

(14)

f lexi,ub(t) =

{
0 , ∑

Ntot_C
i=1 Ei, f or(t) > ∑

Ntot_C
i=1 Ei,opt(t)

f lexi,ub%
(t) ∗ [∑Ntot_C

i=1 Ei, f or(t)−∑
Ntot_C
i=1 Eopt(t)] , ∑

Ntot_C
i=1 Ei, f or(t) < ∑

Ntot_C
i=1 Ei,opt(t)

(15)

Figure 8 demonstrates an example, highlighting a single optimal solution for part
of the portfolio posing as DR signals, e.g., four consumers out of the whole portfolio.
Appendix A (Table A2) offers a more detailed representation, each column presenting a
consumer and each row showing the lowest and upper bounds of flexibility contribution
per timestamp. These values stand for the individualized deviations (per consumer) from
the Portfolio Forecasted Consumption depicted in Figure 7. The aforementioned results for
the same day period are presented, as those in Figures 5 and 7.

Finally, in Table 2 a representative sample of portfolio savings for the whole examined
period between 1 February 2019 up to 7 February 2019 is presented.

Figure 8. DR Signals sent to consumers C1, C2, C3 and C4.

Table 2. Portfolio savings for a week (1 February 2019 up to 7 February 2019).

Timestamp Portfolio Initial Cost (e) Optimization Savings (e) Final Cost (e) Cost Savings (%)

1 February 2019 6282.314 441.9311 5840.3829 −7.0345
2 February 2019 4799.9383 315.214 4484.7243 −6.567
3 February 2019 4393.4721 332.1233 4061.3488 −7.5594
4 February 2019 6114.7628 498.09 5616.6728 −8.1456
5 February 2019 5715.1828 235.5469 5479.6359 −4.1214
6 February 2019 5424.4863 351.2224 5073.2639 −6.4747

7 February 2019 * 5892.0956 344.1329 5547.9627 −5.8406

* This timestamp relates to portfolio savings resulting from optimization output presented in Figure 7.
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5.3. Proposed Demand Response Scheme

The proposed DR scheme envisions an autonomous and dynamic improvement
for optimal energy management involving two or more actors. At its current form, it
utilizes the optimization outputs for consumer and aggregator attempting to enhance
their collaboration while pertaining certain levels of freedom of choice for managing
assets. Both the consumer and the aggregator may choose their own optimized schedules,
according to the electricity price and in parallel. The conception of such a DR scheme
generates new capabilities for energy contract relaxation, while allowing optimization on
the P2P level. More specifically, since day-ahead energy load scheduling is considered,
the aggregator publishes an hourly DR schedule for all portfolio assets, i.e., consumers, at a
fixed timestamp the day before. For the examined use cases, this means on 6 February 2019
at 18:00, since in most markets the SMP for the day-ahead is determined around noon on
the previous day. Then, the consumers have to accept the DR signals and a two-hour period
is provided for them to respond, that is, 19.00–21.00. The decision of whether to accept
or reject the DR signals received, is based mainly on their alignment with the optimized
day-ahead schedule already selected by each consumer. Thus, some DR signals may only
be rejected, while others may be either Accepted or Rejected. This scheme is implemented
by the DSS layer and generates default options for the involved actors (Figure 9).

Figure 9. Proposed DR scheme.

Next, three use cases of the proposed DR Scheme are presented for a single consumer
(C1), considering the results from Appendix A (Tables A1 and A2). Tables 3–5, show the
envisioned DR scheme functionality for consumer (No Opt, SD and HD) to aggregator
interaction, allowing consumers to choose which DR signals to accept, or decline. This type



Energies 2021, 14, 3599 17 of 24

of interaction allows a more dynamic adjustment of the energy load while retaining certain
levels of discomfort or economical benefits.

Table 3. Envisioned DR scheme and interaction between consumer and aggregator. No optimization for consumer.

t Energy Load Forecast(No Opt) DRS(C1) Requested Energy Load(C1) Status

0 6.418 0.46 6.878 Reject
1 6.347 0.77 7.117 Reject
2 6.356 0.5 6.856 Reject
3 6.386 0.58 6.966 Reject
4 6.309 0.69 6.999 Reject
5 6.276 0.3 6.576 Reject
6 6.409 −0.75 5.659 Accept/Reject
7 6.951 −1.41 5.541 Accept/Reject
8 9.763 −5.3 4.463 Accept/Reject
9 30.334 −3.6 26.734 Accept/Reject

10 37.325 −4.83 32.495 Accept/Reject
11 37.855 1.82 39.675 Reject
12 38.13 3.29 41.420 Reject
13 36.906 3.71 40.616 Reject
14 36.11 5.45 41.560 Reject
15 36.691 −2.89 33.801 Accept/Reject
16 37.139 −3.01 34.129 Accept/Reject
17 37.803 −3.16 34.643 Accept/Reject
18 37.065 −3.74 33.325 Accept/Reject
19 34.999 −0.47 34.529 Accept/Reject
20 13.621 −0.58 13.041 Accept/Reject
21 6.819 −0.5 6.319 Accept/Reject
22 6.673 0.88 7.553 Reject
23 6.593 0.88 7.473 Reject

Table 4. Envisioned DR scheme and interaction between consumer and aggregator. Slight Discomfort (SD) for consumer.

t Max Energy Load(No Opt) Min Energy Load(SD) DRS(C1) Requested Energy Load(C1) Status

0 6.418 4.493 0.46 4.953 Accept/Reject
1 6.347 4.443 0.77 5.213 Accept/Reject
2 6.356 4.449 0.5 4.949 Accept/Reject
3 6.386 4.47 0.58 5.050 Accept/Reject
4 6.309 4.416 0.69 5.106 Accept/Reject
5 6.276 4.393 0.3 4.693 Accept/Reject
6 6.409 4.486 −0.75 3.736 Accept/Reject
7 6.951 4.866 −1.41 3.456 Accept/Reject
8 9.763 6.834 −5.3 1.534 Accept/Reject
9 30.334 25.262 −3.6 21.662 Accept/Reject

10 37.325 33.18 −4.83 28.350 Accept/Reject
11 37.855 33.97 1.82 35.790 Accept/Reject
12 38.13 34.831 3.29 38.121 Accept/Reject
13 36.906 33.611 3.71 37.321 Reject
14 36.11 32.312 5.45 37.762 Reject
15 36.691 32.546 −2.89 29.656 Accept/Reject
16 37.139 31.834 −3.01 28.824 Accept/Reject
17 37.803 31.408 −3.16 28.248 Accept/Reject
18 37.065 30.227 −3.74 26.487 Accept/Reject
19 34.999 28.68 −0.47 28.210 Accept/Reject
20 13.621 9.535 −0.58 8.955 Accept/Reject
21 6.819 4.773 −0.5 4.273 Accept/Reject
22 6.673 4.671 0.88 5.551 Accept/Reject
23 6.593 4.615 0.88 5.495 Accept/Reject
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Table 5. Envisioned DR scheme and interaction between consumer and aggregator. Heavy Discomfort (HD) for consumer.

t Max Energy Load (No Opt) Min Energy Load(HD) DRS(C1) Requested Energy Load(C1) Status

0 6.418 4.493 0.46 4.953 Accept/Reject
1 6.347 4.443 0.77 5.213 Accept/Reject
2 6.356 4.449 0.5 4.949 Accept/Reject
3 6.386 4.47 0.58 5.050 Accept/Reject
4 6.309 4.416 0.69 5.106 Accept/Reject
5 6.276 4.393 0.3 4.693 Accept/Reject
6 6.409 4.486 −0.75 3.736 Accept/Reject
7 6.951 4.866 −1.41 3.456 Accept/Reject
8 9.763 6.834 −5.3 1.534 Accept/Reject
9 30.334 21.234 −3.6 17.634 Accept/Reject
10 37.325 26.127 −4.83 21.297 Accept/Reject
11 37.855 26.499 1.82 28.319 Accept/Reject
12 38.13 26.96 3.29 30.250 Accept/Reject
13 36.906 25.834 3.71 29.544 Accept/Reject
14 36.11 25.277 5.45 30.727 Accept/Reject
15 36.691 25.684 −2.89 22.794 Accept/Reject
16 37.139 25.997 −3.01 22.987 Accept/Reject
17 37.803 26.462 −3.16 23.302 Accept/Reject
18 37.065 25.945 −3.74 22.205 Accept/Reject
19 34.999 24.499 −0.47 24.029 Accept/Reject
20 13.621 9.535 −0.58 8.955 Accept/Reject
21 6.819 4.773 −0.5 4.273 Accept/Reject
22 6.673 4.671 0.88 5.551 Accept/Reject
23 6.593 4.615 0.88 5.495 Accept/Reject

6. Conclusions

This study envisions a DSS framework that optimizes day-ahead energy schedul-
ing for aggregators and consumers. The goal is to produce material for academic and
industrial reference, focusing on the concepts of multi-objective optimization, applied to
demand-side management material, such as DR, flexibility, energy load forecasting and
discomfort. An optimization architectural layer describes and solves an individualized
problem for each actor, while actor interaction is managed by a third architectural DSS
layer. The importance of effective energy management is highlighted and the benefits it
yields, while envisioning a cooperative energy management between the aggregator and
the consumer. Any improvements in this type of cooperation, generates new prospects for
efficient energy monitoring and management for modern energy systems.

For presenting and validating findings, two distinct scenarios have been considered,
one referring to consumer optimization and one to aggregator portfolio optimization.
The first scenario models cost minimization offering acceptable options without violating
the comfort of consumers, and addresses the problem with a large-scale nonlinear solver.
The second scenario enables portfolio cost minimization for aggregators, and solves the
problem using mixed integer linear programming. Both problem solutions utilize a com-
mon framework for communicating the results envisioning a DR scheme that improves
prospects for their collaboration. An inclusive collaborative schema has been implemented
enabling both the aggregator and the consumer to engage in DR events, yet retaining their
autonomy, especially for the consumer, following a human-centric approach towards the
end-user, who is the consumer. The results show significant gains in cost savings for both
the aggregator and the consumer.

6.1. Limitations

The limitations of this optimization framework can be attributed to the fact that this
research does not consider constraints, such as power transmission loss, heating losses,
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inventors and distances for calculating the objectives. That is because the final product of
energy load forecast, flexibility, etc., it retrieved from API pilots. Therefore, this detail is
already taken into consideration and pre-calculated, rendering our research design into a
high-level experimental approach.

This study aims to optimize one day-ahead energy scheduling, incorporating a DR
scheme and two system stakeholders: the consumer and the aggregator. For a more holis-
tic approach, a framework that includes DSO as the third system stakeholder should be
contemplated and elaborated on, experimenting on their possible interactions in differ-
ent scenarios.

An analytical comparative analysis regarding the options of solvers for producing
optimization results for each scenario is omitted, since it is considered out of our current
research objectives. A large-scale nonlinear optimization and a mixed integer program-
ming solver are utilized to outputting results for consumer and aggregator respectively.
Metaheuristics involving genetic algorithms could be incorporated for both scenarios while
offering a thorough comparative analysis on solvers. Such limitations generate directions
for improvements and future work.

6.2. Implications

This study aims to produce a framework able to optimize the day-ahead energy
load scheduling as a holistic approach, taking into account both the aggregator’s and the
consumer’s view. Currently, it considers a DR scheme that manages the interaction of
two stakeholders (aggregator and consumer). In its expanded version, it should be able
to handle also the DSO and validate a three-stakeholder interaction through various use
cases. In that case, the framework will be able to identify, test and evaluate a wider range
of requirements for a modern energy distribution network. The proposed framework
models and offers insights for optimal energy management, acknowledging the possible
integratiofn among a variety of parameters, such as RES, and storage units. Integration of
such parameters may offer enhanced energy grid elasticity, since there are more options for
handling issues related with peak loads, broken power grid links, etc. Such parameters
have been identified and presented in the literature, and can be added to an extended
version of this work adjusting the objective functions per stakeholder.

Solving each problem in a stand-alone manner allows interactions between consumers
(P2P level) while allowing DSO to validate DR programs for the aggregator. Constraints and
constants are combined for each case affecting individualized solutions. Novel solutions
for a more efficient monitoring and management of energy grid are important. Nowadays,
aggregators have to manage hundreds of thousands of consumers constituting very large
portfolios showcasing the importance for more efficient energy load scheduling. DSOs
also need reliable tools for monitoring, validating and enforcing a constant and reliable
energy grid functionality, when deemed necessary. In detail, aggregators should be able
to efficiently broadcast a one day-ahead energy load schedule for their portfolios, based
on SMP, flexibility setpoints for consumers and more. The consumers require 24/7 asset
management and an efficient framework that enables a reliable DR signal confirmation
scheme, ideally with dynamic participation. The DSO should retrieve that information
from the aggregator and approve the DR portfolio schedule. In case of an energy grid
issue, DSO should be able to identify the problem with the power distribution network
and notify the aggregator in order to comply with the adjusted one day-ahead energy load
and flexibility requests.

In that respect, this work will be able to assist or become a point of reference for
both the industry and academia, when referring to DERs, P2P energy transfer models and
multi-objective optimization on distribution of energy, considering multi energy assets and
actors within an energy ecosystem.
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6.3. Future Work

The proposed framework conceptualizes a DSS tool for energy stakeholders based on
an optimization engine. It envisions multi-level, multi-factor and multi-objective problem
modeling for solving practical problems in the energy sector. The aim is to improve this
study according to the following points.

• Continue monitoring the evolution of research on multi-objective optimization in
the energy sector. Enforce improvements to the proposed methodology by tackling
limitations, as explained in Section 6.1 and by enhancing the perception on objective
functions.

• Improve the proposed framework by further automating the methodology in a way
that it can act as stand-alone software, which can be utilized given just the appropriate
input datasets.

• Add one more architectural layer, the DSO layer, leading to a tri-level optimization
approach. The DSO layer is to be conceived as tri-objective optimization problem,
considering three objective functions simultaneously. Minimization of grid energy
losses, voltage profile improvement and cost reduction of environmental emissions.

• Implement the proposed DR scheme in a more sophisticated way, including technolo-
gies, such as Blockchain [33]. This would enhance the business perspective of the
proposed framework, while addressing more practical applications of this study.
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Abbreviations
ABC Artificial Bee Colony
AMI Advanced Metering Infrastructure
API application programming interface
BESS Battery Energy Storage Systems
DE Differential Evolution
DER Distributed Energy Resources
DR Demand Response
DSO Distribution System Operator
DSS Decision Support System
DRS Demand Response Signal
ENTSO-E European Network of Transmission System Operators for Electricity
GA Genetic Algorithm
GBT Gradient Boosting Trees
glpk GNU Linear Programming Kit Package
GPRS General Packet Radio Service
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HVAC Heat Ventilation Air-Conditioning
HV High Voltage
ICT Information and Communication Technology
IoT Internet of Things
Ipopt Interior Point Optimizer
LSTM Long Short-Term Memory
MAPE mean absolute percentage error
MIP Mixed Integer Programming
MLP Multilayer Perceptron
MOPSO Multi-objective Particle Swarm Optimization
MSE mean squared error
MV Medium Voltage
NSGA-II Non-dominated Sorting Genetic Algorithm type III
nZEB near-Zero Energy Building
P2P Peer-to-Peer
PMV Predicted Mean Value
PRS Probability Reserve Sufficiency
PV Photovoltaic
ReLU Rectifier Linear Unit
RES Renewable Energy Resources
SAA Sample Average Approximation
SMP System Marginal Price
SPEA2+ Strength Pareto Evolutionary Programming version beyond 2
SVR Support Vector Regression
TAC Total Annual Cost
WA Weighted Aggregation

Nomenclature
ωMLP,LSTM,GBR,SVR The weight considered for the respective energy feature
EMLP,LSTM,GBR,SVR Energy features determined by the respective learner, i.e., MLP, LSTM,

GBR and SVR
i Consumer, i= [1, 349]
t Time step considered, in this work, an hour, i.e., t = [1, 24]
ttotal Total time period considered, in this work a period of one day
Ntot_C Total number of consumers, in this work 349
∆t Time interval considered
f acost(t) Objective cost function for the aggregator
f pdiscom f ort_reduction(t) Objective function for the consumer thermal discomfort
Ei,imp(t) Imported energy at hour t for consumer i
EIT(t) Imported energy tariff at hour t
f lexi,lb(t) Flexibility lower bound at hour t, for consumer i
f lexi,lb%

(t) Consumer’s i percentage lower bound flexibility contribution for
aggregator’s portfolio in time t

f lexi,ub(t) Flexibility upper bound at hour t, for consumer i
f lexi,ub%

(t) Consumer’s i percentage upper bound flexibility contribution for
aggregator’s portfolio in time t

Ei, f or(t) Forecasted energy load at hour t for consumer i
Eimpreduction

Reduced imported energy at hour t
Emaxreduction A user defined constant for setting the percentage of permissible

energy reduction
SMP(t) System marginal price at hour t
f pcost Objective cost function for the consumer
f pdiscom f ortreduction

Objective discomfort function for the consumer
Cpre f erence A weighted variable for adjusting consumer discomfort
auxcoe f f icient An auxiliary coefficient variable acting as an estimator for

consumer discomfort
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Appendix A

Table A1. Cost minimization and discomfort options for consumers.

t No Opt ND ND Chg(%) SD SD Chg(%) AD AD Chg(%) MD MD Chg(%) HD HD Chg(%)

0 6.418 5.143 −19.866 4.493 −29.994 4.493 −29.994 4.493 −29.994 4.493 −29.994
1 6.347 5.183 −18.339 4.443 −29.998 4.443 −29.998 4.443 −29.998 4.443 −29.998
2 6.356 5.38 −15.356 4.449 −30.003 4.449 −30.003 4.449 −30.003 4.449 −30.003
3 6.386 5.432 −14.939 4.47 −30.003 4.47 −30.003 4.47 −30.003 4.47 −30.003
4 6.309 5.298 −16.025 4.416 −30.005 4.416 −30.005 4.416 −30.005 4.416 −30.005
5 6.276 5.012 −20.140 4.393 −30.003 4.393 −30.003 4.393 −30.003 4.393 −30.003
6 6.409 4.486 −30.005 4.486 −30.005 4.486 −30.005 4.486 −30.005 4.486 −30.005
7 6.951 4.866 −29.996 4.866 −29.996 4.866 −29.996 4.866 −29.996 4.866 −29.996
8 9.763 6.834 −30.001 6.834 −30.001 6.834 −30.001 6.834 −30.001 6.834 −30.001
9 30.334 27.767 −8.462 25.262 −16.721 22.851 −24.669 21.234 −29.999 21.234 −29.999

10 37.325 35.455 −5.010 33.18 −11.105 30.99 −16.973 28.778 −22.899 26.127 −30.001
11 37.855 36.18 −4.425 33.97 −10.263 31.843 −15.882 29.694 −21.559 26.499 −29.999
12 38.13 36.895 −3.239 34.831 −8.652 32.844 −13.863 30.837 −19.127 26.96 −29.295
13 36.906 35.675 −3.336 33.611 −8.928 31.626 −14.307 29.619 −19.745 25.834 −30.001
14 36.11 34.5 −4.459 32.312 −10.518 30.205 −16.353 28.077 −22.246 25.277 −30.000
15 36.691 34.821 −5.097 32.546 −11.297 30.356 −17.266 28.144 −23.295 25.684 −29.999
16 37.139 34.398 −7.380 31.834 −14.284 29.367 −20.927 26.875 −27.637 25.997 −30.001
17 37.803 34.242 −9.420 31.408 −16.917 28.68 −24.133 26.462 −30.000 26.462 −30.000
18 37.065 33.172 −10.503 30.227 −18.449 27.394 −26.092 25.945 −30.001 25.945 −30.001
19 34.999 31.495 −10.012 28.68 −18.055 25.97 −25.798 24.499 −30.001 24.499 −30.001
20 13.621 11.252 −17.392 9.535 −29.998 9.535 −29.998 9.535 −29.998 9.535 −29.998
21 6.819 4.933 −27.658 4.773 −30.004 4.773 −30.004 4.773 −30.004 4.773 −30.004
22 6.673 5.05 −24.322 4.671 −30.001 4.671 −30.001 4.671 −30.001 4.671 −30.001
23 6.593 5.324 −19.248 4.615 −30.002 4.615 −30.002 4.615 −30.002 4.615 −30.002

Total Sum 495.28 448.79 −9.386 414.31 −16.35 388.57 −21.55 366.61 −25.98 346.96 −29.95

Table A2. Partial one day-ahead portfolio scheduling (10 consumers) with lower (l) and upper (u) bounds of flexibility
contribution in kWh.

t C1 (l, u) C2 (l, u) C3 (l, u) C4 (l, u) C5 (l, u) C6 (l, u) C7 (l, u) C8 (l, u) C9 (l, u) C10 (l, u)

0 (0, 0.46) (0, 7.86) (0, 0.32) (0, 1.79) (0, 0.57) (0, 2.04) (0, 0.49) (0, 0.37) (0, 0.76) (0, 0.62)
1 (0, 0.77) (0, 4.72) (0, 0.33) (0, 0.84) (0, 0.54) (0, 1.66) (0, 0.88) (0, 0.76) (0, 0.63) (0, 0.69)
2 (0, 0.5) (0, 4.75) (0, 0.35) (0, 1.45) (0, 0.53) (0, 1.91) (0, 0.87) (0, 0.65) (0, 0.26) (0, 0.42)
3 (0, 0.58) (0, 4.15) (0, 0.43) (0, 0.82) (0, 0.42) (0, 1.05) (0, 0.49) (0, 0.4) (0, 0.3) (0, 0.72)
4 (0, 0.69) (0, 4.96) (0, 0.52) (0, 1.38) (0, 0.56) (0, 0.62) (0, 1.16) (0, 0.23) (0, 0.85) (0, 0.56)
5 (0, 0.3) (0, 4.1) (0, 0.34) (0, 1.55) (0, 0.57) (0, 1.12) (0, 1.2) (0, 0.39) (0, 0.78) (0, 0.84)
6 (−0.75, 0) (−4.47, 0) (−0.33, 0) (−2.18, 0) (−0.9, 0) (−2.53, 0) (−1.16, 0) (−0.61, 0) (−0.61, 0) (−0.92, 0)
7 (−1.41, 0) (−4.5, 0) (−0.37, 0) (−1.92, 0) (−1.1, 0) (−2.26, 0) (−1.43, 0) (−0.47, 0) (−0.58, 0) (−0.96, 0)
8 (−5.3, 0) (−5.1, 0) (−0.34, 0) (−2.24, 0) (−1.03, 0) (−1.75, 0) (−1.7, 0) (−1.39, 0) (−0.85, 0) (−1.23, 0)
9 (−3.6, 0) (−4, 0) (−0.43, 0) (−1.34, 0) (−1.42, 0) (−1.69, 0) (−1.99, 0) (−1.24, 0) (−0.79, 0) (−0.79, 0)

10 (−4.83, 0) (−3.16, 0) (−0.52, 0) (−6.59, 0) (−1.1, 0) (−2.27, 0) (−1.46, 0) (−1.56, 0) (−0.83, 0) (−1.1, 0)
11 (0, 1.82) (0, 3.44) (0, 0.33) (0, 2.18) (0, 1.23) (0, 2.09) (0, 0.73) (0, 0.44) (0, 1) (0, 0.87)
12 (0, 3.29) (0, 7.53) (0, 0.33) (0, 4.43) (0, 2.32) (0, 4.58) (0, 1.5) (0, 1.38) (0, 1.99) (0, 0.83)
13 (0, 3.71) (0, 7.43) (0, 0.39) (0, 3.71) (0, 1.85) (0, 4.8) (0, 1.19) (0, 1.78) (0, 2.5) (0, 2.24)
14 (0, 5.45) (0, 9.83) (0, 0.22) (0, 5.32) (0, 1.41) (0, 4.81) (0, 1.02) (0, 0.87) (0, 2.8) (0, 0.98)
15 (−2.89, 0) (−5.95, 0) (−0.07, 0) (−4.1, 0) (−1.14, 0) (−2.48, 0) (−0.67, 0) (−1.41, 0) (−1.24, 0) (−1.88, 0)
16 (−3.01, 0) (−5.87, 0) (−0.23, 0) (−2.74, 0) (−1.38, 0) (−2.64, 0) (−0.56, 0) (−0.96, 0) (−1.86, 0) (−1.8, 0)
17 (−3.16, 0) (−6.04, 0) (−0.3, 0) (−3.74, 0) (−1.06, 0) (−3.35, 0) (−0.81, 0) (−0.58, 0) (−2.28, 0) (−1.96, 0)
18 (−3.74, 0) (−6.1, 0) (−0.28, 0) (−3.41, 0) (−0.53, 0) (−2.83, 0) (−0.6, 0) (−0.7, 0) (−2.77, 0) (−1.43, 0)
19 (−0.47, 0) (−6.66, 0) (−0.25, 0) (−2.22, 0) (−0.41, 0) (−4.21, 0) (−0.76, 0) (−1.51, 0) (−2.23, 0) (−0.89, 0)
20 (−0.58, 0) (−8.46, 0) (−0.28, 0) (−2.03, 0) (−0.64, 0) (−3.9, 0) (−0.62, 0) (−1.56, 0) (−1.57, 0) (−0.63, 0)
21 (−0.5, 0) (−9.41, 0) (−0.21, 0) (−3.56, 0) (−0.43, 0) (−3.79, 0) (−0.34, 0) (−0.9, 0) (−1.57, 0) (−0.41, 0)
22 (0, 0.88) (0, 10.64) (0, 0.3) (0, 4.36) (0, 0.5) (0, 3) (0, 0.95) (0, 1.31) (0, 2.2) (0, 0.4)
23 (0, 0.88) (0, 7.79) (0, 0.43) (0, 4.89) (0, 0.46) (0, 4.11) (0, 0.98) (0, 0.47) (0, 1.58) (0, 0.54)
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